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Radiative transfer is analyzed in a semitransparent coating

on an opaque substrate and in a semitransparent layer for

evaluating thermal protection behavior and ceramic component

performance in high temperature applications. Some ceramics are

partially transparent for radiative transfer, and at high

temperatures internal emission and reflections affect their

thermal performance. The behavior is examined for a ceramic

component for which interior cooling is not provided. Two

conditions are considered: i) the layer is heated by penetration

of radiation from hot surroundings while its external surface is

simultaneously film cooled by convection, and 2) the surface is

heated by convection while the semitransparent material cools from

within by radiant emission leaving through the surface. By using

the two-flux method, which has been found to yield good accuracy

in previous studies, a special solution is obtained for these

conditions. The analytical result includes isotropic scattering

and requires only an integration to obtain the temperature

distribution within the semitransparent material. Illustrative

results are given to demonstrate the nature of the thermal

behavior.
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Nomenclature

absorption coefficient of semitransparent material, m -I

integration constant in energy equation, W/m; C = C/DcT_g

thickness of coating or one-half of layer (Fig. 1), m

flux quantity defined in Eq. (2b), W/m2; G = G/cT4g

dimensionless convection-radiation parameter, h/cT_

heat transfer coefficient at boundary, W/m2K

thermal conductivity, W/mK

extinction coefficient, a+c_, m -I

conduction-radiation parameter, k/cT_D

refractive index of layer

heat flux, W/m2; q = q/cT4g

radiative heat flux, W/m2; qr = qr/OT_

radiative fluxes in + and - x directions, W/m 2

externally incident radiation flux, W/m2; 61_ = qr/CTgO4

absolute temperature, K

dimensionless temperature, T/Tg

gas temperature at coating surface, K

coordinate in layer (Fig. i), m; X = x/D

eD emissivity of substrate measured in air or vacuum

K D optical thickness, KD

p diffuse reflectivity of interface

a Stefan-Boltzmann constant, W/m2K 4

-i
0 s scattering coefficient in layer, m

Q scattering albedo in layer, cJ(a+c_) = cs/K

Subscripts

tot total heat flux by combined conduction and radiation



Superscripts

i inside of layer

o outside of layer

Introduction

The development of ceramic coatings to protect materials for

high temperature use is critical for advanced aircraft engines

where high thermal efficiency is required. Some coatings

partially transmit radiant energy in certain wavelength regions.

In high temperature surroundings such as in a combustion chamber,

infrared and visible radiation transmitted within the coating

provides internal heating that affects temperatures of the coating

and its substrate.

At elevated temperatures radiant emission within a material

can be large. For a material with a high refractive index this is

especially true since internal emission depends on the refractive

index squared. Since radiation leaving through an interface

cannot exceed that from a blackbody, internal reflections occur

when radiation passes into a material with a lower refractive

index. In addition to internal emission, absorption and

reflection, radiant scattering and heat conduction take part in

the energy transfer. The interaction of internal radiation and

conduction must be understood for semitransparent components and

protective coatings subjected to radiative and convective

environments. Internal scattering must be examined as it can

influence the temperature distribution for some conditions.

An important area involving radiation within hot materials

with refractive indices larger than one and with significant



internal emission, is the heat treating and cooling of glass

plates. I The related literature has been briefly reviewed in

previous papers. _'3 In these papers, temperature distributions and

heat flows in partially transmitting materials with high

refractive indices are predicted using the radiative transfer

equations coupled with heat conduction. The resulting integral

equations, including the scattering source function for some of

the work, are solved numerically. Each exterior boundary is

heated by radiation and convection, and diffuse interface

reflections are included. For comparisons during the development

of approximate solutions in Ref. 4, the numerical solutions were

extended to a three-layer composite with three spectral bands in

each layer and with isotropic scattering. This simulates a

ceramic layer with a reinforcing layer, or with coatings of other

ceramic materials for protection from corrosive atmospheres such

as combustion gases.

Since the formulation and solution of the exact radiative

transfer equations including scattering is rather complex, it is

desirable to develop more convenient approximate methods such as

the two-flux method if these can provide accurate results. The

two-flux equations are given in Refs. 5 and 6. The two-flux

method was shown to give accurate results for a gray layer with a

refractive index of one between boundaries with specified

temperatures. 7'8 Two-flux and diffusion solutions, and

combinations of the two for layers with optically thin and thick

spectral bands, were derived in Ref. 4 for materials with

refractive indices larger than one. This included heating



conditions where the boundary temperatures are not specified and

must be determined during the solution. The two-flux formulation

yielded very accurate results by comparisons with exact solutions.

In Ref. 9 two-flux solutions were obtained with two spectral bands

for a packed bed with two layers of particles.

In the present work it is shown that for some types of heating

and cooling conditions the two-flux solution can be reduced to a

single integration to generate the material temperature

distribution. Results are given that illustrate the behavior of a

semitransparent protective coating on an opaque substrate when the

substrate is not internally cooled. This models a protected

component that is either heated on all sides by hot gas while it

is cooled by radiating to cold surroundings, or is being film

cooled on all sides while being subjected to radiation from hot

surroundings.

Analysis

Energy and two-flux equations

Figure i shows the geometries and conditions for which the

present analysis was developed. In Fig. la a semitransparent

layer such as a ceramic component is in a high temperature

environment that provides symmetric radiative and convective

conditions at both boundaries. In Fig. lb there is a

semitransparent protective coating of thickness D on each side of

a high temperature opaque component. Both sides of the component

have the same coating and are subjected to the same external

conditions; from this symmetry there is no net heat flow through

the entire coated composite. The results also apply for a coating
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on one side of a substrate where the uncoated side is insulated or

has negligible heat loss. The layer in Fig. la and the coatings

in Fig. Ib are semitransparent and are gray emitting, absorbing,

scattering, and heat conducting materials with refractive indices

larger than one. The substrate in Fig. ib is opaque. The

convective and radiative conditions are uniform on the coating

boundaries. The temperature distribution is to be found in the

semitransparent layer of Fig. la and in the coating material in

Fig. ib, and how the distribution depends on the parameters will

be illustrated.

From symmetry the energy equation combining the energy fluxes

by conduction and radiation within the layers in Fig. 1 is

_k d_xl +qr(X) = qtot = 0 (i)
X

Thermal properties are assumed independent of temperature. Since

the substrate in Fig. Ib is opaque it does not have an internal

radiative energy source. Then from Eq. (I) with q=(x) = 0, dT/dx

= 0 within the substrate, and with symmetric boundary conditions

or an insulated back side, the substrate is at a uniform

temperature equal to T(D).

The solution method developed here to determine the heat

transfer behavior of the semitransparent material is based on the

two-flux method 4'5 for the radiative fluxes. To validate this

approximate method some results are compared with numerical

solutions of the exact radiative transfer equations using the

computer program from Ref. 3. In the two-flux method the

radiative fluxes q_(x) and q_(x) are in the positive and negative
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directions (Fig. i), and each flux is assumed isotropic. The

radiative flux qr(x) in the x direction and a quantity G(x) are

related to q_(x) and q_(x) by, 5

qr(x) = q;(x) - q='(x) ; G(x) = 2[q;(x) + q_(x)]

Solving Eqs. (2a) and (2b)

relations,

qr(x) = _[--_- + qr(x) ;

(2a,b)

for q_(x) and q_(x) gives the useful

- qr (x)

The two-flux equations including isotropic scattering are,

(3a,b)

dqr (x)
- K(I- _) [4n2(_T4(x)- G(x) ] (4)

dx

dG(x) _ _ 3Kq=(x) (5)
dx

Integration of energy and two-flux equations

The q=(x) in Eq. (5) is substituted into Eq. (i) which is then

integrated to give,

1 (6)kT(x)+-c-- G(x) = C
3K

where C is a constant.

The energy equation Eq.

The two-flux relation Eq. (4) is now used.

(i) is differentiated and used to

eliminate dqr(x)/dx on the left side of Eq. (4). The G(x) on the

right side of Eq. (4) is eliminated by using Eq. (6). This yields

the following equation in terms of T(x),

k d2T- = K(I-C_) [4n2oT4(x)+3KkT(x)- 3KC]
dx 2

The order of Eq. (7) is reduced by multiplying the entire

(7)



equation by dT/dx and integrating each term. The constant of

integration is eliminated by subtracting the integrated equation

evaluated at x = 0 to give,

-- - = K(I-Q) n2_[TS(x)-TS(0)]

2 _ _.o (8)

3 T 2 }÷-- Kk [T2(x) - (0)]-3KC[T(x)-T(0)]
2

Boundary conditions

At the boundary x = 0 external convection is equal to

conduction within the layer; radiation does not enter this balance

since radiation is a volume process and hence, for a

semitransparent material, there is no absorption or emission at

the surface itself. Then

dT II = h[Tg- T(0) ]
- k-_xx.0'

(9)

To derive the boundary condition at x = D in Fig. Ib, the

radiative flux leaving the opaque gray substrate at x = D is

expressed in terms of emitted and reflected radiation,

qr-(D) = _n2oT 4(D) + (I- eD) qr*(D) (i0)

where n is the refractive index of the coating and e D is the

substrate emissivity as measured in air or vacuum. Some

substitutions into Eq. (i0) are now made. The q_(D) and qr(D) are

eliminated by using Eqs. (3a,b). The G(D) and q=(D) that this

introduces are eliminated by using Eqs. (6) and (i). The result

is a relation for dT/dxlx=D in terms of T(D) and the constant C,

dT I - 2eo [3CK__ - 3kKT(D)- n2GT4(D)] (II)k-_x x=D 2-e D 4 4



For the symmetric single layer in Fig. la, dT/dXlx=D = 0 which is

also equivalent to the limit in Eq. (II) when eD _ 0.

To obtain an expression for the constant C, Eq. (6) is used at

x = 0 to give C = kT(0) + (I/3K)G(O). The G(0) depends on the

externally incident radiation and on the flux internally reflected

at the boundary; an expression for G(O) is derived in Ref. 4 as,

i- po 1+piG(0) = 4- o_ 2- qr(0) (12)
i- p± q= i- pl

Using Eq. (12) the C is given by,

I-P i q= - 2--l_p± q=(0)

The q=(O) is eliminated from Eq. (13) by using Eq. (i) at x = 0

and replacing the conduction term with the convection term in Eq.

(9) ; this yields,

I-Q i q= + 2 --l_Oi h [Tg-T(0) ] (14)

Form of differential equation for integration

The boundary condition, Eq. (9), is substituted into the right

side of Eq. (8) and the result is solved for dT/dx to yield,

dT
dx 1

+--Kk [T2(x) - (0)] -3KC[T(x)-T(0)] ÷ _[Tg-T(0)]
2

(15)

The sign in front of the square root is selected according to the

initial slope of the temperature profile expected from the heating

and cooling imposed by external radiation and convection.
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Before discussing the numerical procedure, the differential

equation, constant C, and boundary condition at x = D for Figs. la

and ib are placed in dimensionless form:

-± (I-_) n2 [tS(X)-ts(0) ]
1

3 2 t 2 d[t(X) -t(0) ]}+ [l-t(0) ]+ -- KDN [t (X) - (0) ] - 3 K D
2

(16a)

d = Nt(0)+-_-i _4 I-P° 4=°+ 2 l+P--_iH[l-t(0)]l (16b)

3 K D [ l-pl l_pl ]

--_X-I X-I

Numerlcal solution

To obtain the temperature distribution, the C in Eq. (16b) is

substituted into Eq. (16a); dt/dX is then a function of t(0) and

the specified parameters. A value of t(0) is guessed and forward

integration is performed from X = 0 to 1 using a fourth-order

Runge-Kutta method. At the end of the integration the boundary

condition Eq. (17a) or (17b) is checked to see if it is satisfied;

if not, t(0) is adjusted until it is satisfied. For some values

of the parameters the integration is very sensitive to t(0);

double precision was used for these cases. If the optical

thickness is large there is radiative penetration for only small X

and the temperature distribution is uniform except in a small

region near X = O. Then the forward integration is performed only

over the X distance where the temperature is changing

significantly, and the particular t(0) is found for which

I0



dt/dX - 0 as the integration proceeds. For these conditions the

temperature distribution is independent of the condition in Eq.

(17b), and dt/dXlx=1 = 0 which also corresponds to the symmetric

single layer in Fig. la.

Within the substrate, Fig. Ib, the temperature is uniform and

equal to the temperature t(1) at the coating-substrate interface.

This follows from the energy equation in the absence of heat

sources within the opaque substrate, and the temperatures being

equal at both sides of the substrate for the symmetric conditions

considered here.

Special Case for a Coating at Uniform Temperature

In some applications a protective coating has a high thermal

conductivity or is thin enough that its temperature does not vary

much throughout its thickness. The following analysis is for the

special case of a layer at uniform temperature.

Equation (4) is differentiated with T constant and is

substituted into the left side of Eq. (5) to eliminate dG(x)/dx,

d2qr (x)

dx 2
- 3K2(I - _)qr(X)

The general solution of Eq. (18) is

q=(x) = CleUX+C2e -ax = K[3(I-_)]I/2

Substituting q_(x) into Eq. (4) gives for G(x),

(18)

(19)

= - e ax - C 2 e -axG(x) 4n2aT 4 _ C I (20)

An overall energy balance states that incident radiation and

convection to the coating must equal reflected radiation and the
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radiation leaving the coating, qr° + h[Tg-T(0)] = qOpO+ q_(0)(l-pi).

By applying the radiative conditions across x = 0, qr(0) = q_(0) -

qr(0 ) = q_(l-p °) + piqr(0 ) -- q_(0), the energy balance reduces to

q=(0) (21)
T (0) - + T

h g

where qr(0) is inside the coating. Thus the uniform coating

temperature T = T(0) can be obtained by finding qr(0) from Eq.

(19) by determining the integration constants CI and C 2. These

are evaluated by applying the boundary conditions to Eqs. (19) and

(20). At x = 0 and D Eqs. (12) and (i0) apply. Using Eqs.

(3a,b), Eq. (i0) becomes

2- ED
G(D) = 2--q=(D) + 4n2OT 4

ED

(22)

Equations (19) and (20) evaluated at x = 0 and D are substituted

into the boundary conditions (12) and (22). This yields two

simultaneous equations for CI and C2 that are solved

algebraically. From Eq. (19) qr(0) = CI + C2, and this is inserted

into Eq. (21); the result is placed into dimensionless form to

obtain the following equation for t that can be evaluated with a

root solver,

° }(_l-_3)e +91+_314(_5_= -n2t 4)
t=l+

(- _i÷294) (_i- _3)e -2B,_+ (I_+2 94) (91+ 93)

(23)

where

I I i 4-2e D
3 _ ; 92 = [3(i- Q)]I/2 ; 93 ='-

91 = 1 - Q eD
; 134 - l+p i

l-p_ ; 13s-

I- po

I- pl
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Limit for a Transparent Coating on an Opaque Substrate

For KD _ 0 radiation is absorbed and emitted only by the

substrate, but this absorption and emission is affected by

multiple reflections within the coating. The net absorption by

the substrate at X = 1 is conducted out through the coating and is

equal to the convection from the coating surface. The temperature

distribution is linear, and t(1) and t(0) are given by,

qr (I-P°) +eD pln2t4(1) 2 4

e D l-pi(l-eD ) -n t (i) = H[t(1)-l] +I (24a)

t(0) = t(1) + +I (24b)

Apparent Surface Temperature from Emitted Radiation

For temperature measurements using pyrometry it is of interest

to examine the coating surface temperature calculated from the

radiation leaving the coating as compared with the t(0) obtained

from the solution of Eq. (16a). For a gray material the

transmittance or absorptance of the coating surface is 1 - po.

From an overall energy balance the energy leaving the coating must

equal the incident radiation transmitted across the surface and

the energy transferred to the surface by convection. Then the

apparent temperature Tapp required to emit this energy, relative to

the actual surface temperature T(0), is given by,

Tapp _ 1 1 { o } (25)
T(0) t(0) (l-po) I/4 _=1(l-p °) +H[l-t(0)] i/4

13



Results and Discussion

To illustrate the characteristics of the solution, temperature

distributions are given for a symmetric semitransparent layer as

in Fig. la, and for a protective coating on an insulated or

symmetric substrate as in Fig. lb. Results are given for two

situations: I) radiative heating with convective cooling to

simulate a film cooled material in hot surroundings, and 2)

convective heating with radiative cooling to simulate a material

in hot gas with cooled surroundings. The results illustrate how

the temperature of a substrate, which is to be thermally protected

or protected from a corrosive atmosphere, is influenced by the

physical parameters of its coating.

Symmetric Heating Conditions on a Semitransparent Layer

Results are given first to validate the two-flux method by

comparison with numerical solutions of the radiative transfer

equations. By using the computer program from Ref. 3 with

symmetric boundary conditions, temperature distributions are

obtained for the layer in Fig. la, or for the coating in Fig. ib

in the limit of a perfectly reflecting substrate or when t(X) is

independent of eD as will be discussed. For these conditions

dt/dXlx=1 = 0. In Fig. 2 the distributions are for the

semitransparent material exposed to a hot environment that

provides an incident radiative flux q_ = o(1.5 Tg) 4. The surface

is being cooled rather strongly by convection with a convection-

radiation parameter H = i0. Radiation penetrates into the layer

and the net absorbed energy is conducted to the surface at X = 0

and removed by convection.

\
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The results from the numerical solution of the exact transfer

equations show that the two-flux analysis provides excellent

agreement even in regions with large temperature gradients. The

two-flux solution will then be used to illustrate some aspects of

the thermal performance of a coating on an opaque substrate for

the boundary conditions considered here. The results in Fig. 2

are valid for Fig. ib when t(X) does not depend on the substrate

emissivity. Figure 3 will show the effect of eD, which is found

to be important only for a coating with a small optical thickness.

In Fig. 2 the largest effect of radiant absorption in the

coating is for K D = 0.1 where the substrate temperature, t(1), is

only a little below t = 1.5 which is the effective blackbody

temperature of the surroundings. For larger or smaller K D the

substrate temperature decreases. The limit is shown when the

coating is opaque so that radiative exchange is only at X = 0.

For very small K D the low substrate temperature for K D = 0.001 is

not realistic for actual coating behavior as it requires the

substrate to be perfectly reflecting, e D - 0; even a small e D

provides absorption at the substrate surface and can raise its

temperature considerably as shown in Fig. 3. For a large K D and

with large convective cooling there are large temperature changes

near X = 0 that can produce thermal stresses; the temperature

gradients are reduced if N is larger (see Fig. 6).

Effect of Substrate Emissivity

The previous results apply for a symmetric single layer and

for a coating with the limiting condition e_ - 0. It is now shown

(for the present parameters) that these results also apply for
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coatings with KD > 0.03 because for these KD the temperature

distributions are independent of eD.

Figure 3a shows the effect of having a coating on a substrate

that is either black or has eD = 0.005; the results are compared

with t(X) from Fig. 2 for eD = 0. For eD = 1 and when KD is very

small, radiation penetrates through the coating and is absorbed by

the substrate. The substrate is almost at the temperature of the

radiating surroundings, t = 1.5, and the internal temperature

distribution is linear as provided by heat conduction. There is a

substantial effect of eD which affects energy absorption at the

substrate surface, and the results are sensitive to small eD as

shown by t(X) for eD = 0.005. The effect of eD is substantially

decreased when KD = 0.01, and a further increase to KD = 0.03

eliminates the effect of e D. Hence, for the parameters considered

here, when KD > 0.03 there is a negligible effect of eD and the

t(X) from Fig. 2 apply for all e D. The sensitivity to e D for

small K D is reduced when heat conduction is increased (larger N).

A larger N also makes t(0) change more with eD. These

characteristics can be quantified by examining the behavior of the

limiting solution for K D _ 0 in Eq. (24).

Figure 3b has results for a coating on a substrate when the

effective blackbody temperature of the radiating surroundings is

small so that q_ = (0.25Tg)4; there is then radiative cooling

acting along with convective heating. For small absorption in the

coating (small KD) and with e D _ 0 the temperature in the coating

is close to Tg (t = 1.0) since there are very little radiative

heat losses from either the coating or substrate surface for these
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conditions. If, however eD = 1.0, the temperature at X = 1 is

substantially reduced for small KD by energy radiated from the

substrate surface to the surroundings, and heat conduction

provides a linear t(X). Since the convective heating is at the

coating surface the highest temperature for each KD is at X = 0.

As KD increases, the coating radiates away energy that has been

conducted into its interior. For e D - 0 the lowest temperature at

the substrate interface X = 1 is for K_ = 0.I. For eD = 1 the

substrate temperature is further reduced by radiation loss from

the substrate boundary. For K D > -0.i the effect of e D is not

significant, and for larger K D the t(X) increases toward the

opaque limit. A small eD has a significant effect if K D < 0.i,

but this sensitivity to e D decreases if N is increased. The

results demonstrate that for certain ranges of KD and eD,

radiation from the coating and substrate can be effective in

reducing the substrate temperature.

Refractive Index Effects for Radiative Heating with Convective

Cooling

The previous results are for a refractive index n = 1.5.

Results for n = i, 1.5, and 2 in Fig. 4 illustrate how t(X) is

influenced by n for KD up to the opaque limit. For KD = 0.001 and

0.1, t(X) results are given for eD = 0 and 1; for larger KD the

t(X) are independent of e D. For small K D the temperatures are

increased for larger n, but for eD = 1 the increase is small. For

KD _ 1 the trend is reversed and the maximum temperature is

reduced with increasing n. This results from increased reflection

at the external surface that prevents part of the incident
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radiation from entering the layer. For small KD the effect of

reflecting away part of q_ is over compensated by decreased

internal emission, and by increased internal reflections providing

a longer radiation path that augments internal radiative

absorption and raises the internal temperatures. For KD = 0.1 the

effect of e D is rather small for n = 1.5 as noted previously; the

effect of e D is even smaller for n = 2. For n = 1 internal

reflections do not occur and there is a more significant effect of

e D .

Scattering Effects for Convective Heating with Radiative Cooling

The t(X) in Fig. 5 illustrate the effect of scattering; for

the previous figures Q = 0. The t(X) are almost independent of eD

for the K D values shown where all of the absorption optical

thicknesses aD are _ 0.i. For aD = 0.I there is a small effect of

e D. The results are for a coating with convective heating and

radiative cooling. Two sets of distributions are given where aD

is held constant at either 0.I or 1 while scattering is added

thereby increasing Q. For the heating conditions considered,

increased scattering reduced the ability of the layer to radiate

away energy from the coating region near the substrate. This

produced higher internal temperatures and an increased substrate

temperature.

Conduction and Convection Effects

The influence of the conduction and convection parameters are

illustrated in Figs. 6 and 7. The upper set of curves in Fig. 6

are for radiative heating with convective cooling. For a very

small N the energy absorbed from incident radiation is not readily

18



The substrate and most of the coating are then near the

surroundings temperature t = 1.5 with convective cooling effects

only in the region close to X = 0. Increasing N to i0 makes t(X)

rather uniform in the coating thereby decreasing the substrate

temperature except near X = 0. For large N there is an effect of

eD but it is very small. Since the profiles all have dt/dX very

close to zero at X = 1 they also apply for the single symmetric

layer in Fig. la. The curves in the lower part of Fig. 6 show how

radiative cooling can reduce the substrate temperature if N is

small. For N = I0 the t(X) is close to the uniform temperature

limit from Eq. (23).

An increase in the external convection coefficient produces

increased temperature gradients near the outer boundary; these can

become large as in Fig. 7 for N = 0.i. For K D = 1 the

temperatures are uniform over much of the coating interior, and

the results are valid for any e D. For K D = 0.003 tWO sets of

curves show the effect of eD; for a coating on a substrate (Fig.

ib) there is a subsantial difference between a black and perfectly

reflecting substrate. The t(X) for K D = 0.003 with e_ = 0, and

for K D = i, are valid for a symmetric single layer (Fig. la).

Apparent Surface Temperature

To measure the surface temperature of a coating with a

radiation detector, it is of interest to compare the temperature

calculated from the radiative flux leaving from within the coating

with the actual surface temperature. The results for H = i0 in

Fig. 8 are for large convection, and since conduction is small,

there are large variations in t(X) within the coating. Since the
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interior temperatures are larger than t(0) the Tappcalculated from

the exiting radiation is larger than T(0). The optical thickness

must be quite large for Tapp/T(0) to be near I. For H = 1 the

gradients of t(X) are reduced and Tap p is closer to T(0); this

would also be true for a larger N. The effects of H, N, and eD

are readily examined using the present analytical relations. For

radiative cooling with convective heating the Tapp/T(0) < i.

Conclusions

A convenient analytical expression has been derived to predict

thermal behavior of a semitransparent coating on an opaque

substrate when internal cooling is not provided. The substrate is

either insulated on its side away from the coating, or the

geometry and boundary conditions are symmetric, so there is no net

heat flow through the coated material. The temperature

distribution in the coating is a result of the local balance

between internal radiation and conduction. When the coating is

heated by hot gases in cooled surroundings, there can be a

reduction in substrate temperature as a result of radiative

cooling from within the coating. For the illustrative results

given here a coating optical thickness larger than about KD = 0.3

gives a thermal behavior almost independent of the substrate

emissivity. For these conditions the results also apply for a

single semitransparent layer with symmetric boundary conditions.

For very optically thin coatings the temperature distributions are

sensitive to the substrate emittance for the illustrative

parameters used here. Results for other parameters are easily

examined by using the convenient analytical expressions that were

developed.
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Figure Captions

Fig. 1 Geometry and coordinate system for two-flux analysis with

symmetric thermal boundary conditions.

a) Single semitransparent layer

b) Symmetric semitransparent coatings on an opaque substrate.

Fig. 2 Effect of optical thickness on temperature distributions in

a semitransparent layer symmetrically heated by radiation and

cooled by convection. (n = 1.5, tg = i, _ = 1.54 , H = i0, N = 0.i,

= 0).

Fig. 3 Substrate emissivity effects on temperatures in a coating

on an opaque substrate with the other side of the substrate

insulated. (n = 1.5, tg = I, H = i0, N = 0.i, _ = 0).

a) Radiative heating with convective cooling, q_ = 1.54

b) Convective heating with radiative cooling, q_ = 0.254 .

Fig. 4 Effect of coating refractive index and substrate emissivity

for radiative heating with convective cooling. (tg = i, q_ = 1.54, H

= i0, N = 0.I, D = 0).

Fig. 5 Scattering effects in a coating for convective heating with

radiative cooling. (n = 1.5, tg = i, q_ = 0.254 , H = I0, N = 0.i).

Fig. 6 Effect of heat conductivity in a coating for radiative

heating and convective cooling, and for radiative cooling with

convective heating. (K D = i, n = 1.5, tg = i, q_ = 1.54 , H = i0, _ =

0).

Fig. 7 External convective cooling effects on temperatures in a

coating heated by radiation. (K D = 1 and 0.003, n = 1.5, tg = i, q_

= 1.54 , N = 0.i, _ = 0).

Fig. 8 Apparent surface temperature determined from radiation

leaving the coating surface. (tg = i, q_ = 1.54 , H = 1 and i0, N =

0.i, Q = 0).
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